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1 Introduction

The Generalized Least Square (gls) estimator is a family of econometric methods that have seen
numerous applications in empirical economics. As pointed out by Wooldridge (2003), parametric
gls type estimators accommodate a deviation from the assumption that the errors in the model
are homoskedastic and serial uncorrelated. For example, relative to the ordinary least squares
regression model, gls no longer assumes that the covariance matrix of the errors is diagonal
with identical diagonal elements.

In a more general setting, each error may be a random vector, which includes some of the
most popular applications of gls. For example, the Seemingly Unrelated Regression (sur,
Zellner, 1962 and 1971) has been developed for equation systems, and widely applied to gain
efficiency by exploiting the correlation between errors across equations. Similarly, in the anal-
ysis of panel data the random effects model rem recognizes that there are individual specific,
time-invariant features that are unobservable and uncorrelated with the explanatory variables.
A useful extension to re is the correlated random effects (cre) model (Chamberlain, 1980;
Wooldridge, 2005; Murtazashvili and Wooldridge, 2008), which allows the individual effects to
be correlated with the explanatory variables usually as a linear function of the means of the
regressors.

However, the parametric gls still maintains the assumption that the error vector of each in-
dividual has the same covariance matrix. In reality however, heterogeneity in error distributions
is a major concern in empirical analysis. Such heterogeneity can be caused by observations on
individuals or households reflecting variation in demographics such as the size of the household,
and the level of income among others. It is a challenge for analysts who seek reliable inference
with the data to capture the form of the heterogeneity in observations.

The standard Bayesian approach to gls assumes that the error distribution is multivariate
normal. Recent developments in Bayesian methods allow the use of prior information to relax this
assumption. For example, the Dirichlet prior has been introduced to accommodate heterogeneity
in the distributions of both errors (see Chigira and Shiba, 2015 for an example) and model
parameters (Allenby et al., 1998) by mixing a fixed number of normal distributions.

However, a notable drawback of the Dirichlet prior is that the the dimension of the mixing
distribution is usually unknown. Bayesian semi-parametric methods introduce more flexibility
by letting the data and the prior determine the structure of heterogeneity jointly. The Dirichlet
Process (DP) prior1 can be used to form a mixing of normal distributions, whose dimension need
not be predetermined. In this sense, the use of DP priors represents a more flexible approach to
accommodating heterogeneity than the mixing of a fixed number of normal distributions with
the Dirichlet prior.

In the context where heterogeneity in the distributions of errors is the major concern, as
in where the focus is upon the inference, DP priors are introduced for the hyper-parameters
of the errors in the model2 This leads to the grouping of the hyper-parameters, with those in
the same group having identical values. As such, the corresponding errors of hyper-parameters
in the same group have the same distribution, while the errors whose hyper-parameters are in
separate groups are from different distributions.

A landmark study in this area is Conley et al. (2008), where a Bayesian semi-parametric
approach to the instrumental variable problem was introduced in a two stage least square frame-
work. Due to the endogeneity of some explanatory variables, the errors in the two stages are
correlated by construction. Instead of assuming that the joint errors in the two stages have an
identical bivariate normal distribution (cf. Chao and Phillips, 1998; Geweke, 1996; Kleibergen

1See Escobar and West, 1995 and 1998 and MacEachern, 1998 for a reference of the Dirichlet Process prior.
2E.g. for an error vector with zero mean, its hyper-parameter is its covariance matrix.
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and van Dijk, 1998; Rossi et al., 2005), the authors introduced a Dirichlet process prior for their
hyper-parameters. This provides a semi-parametric version of two stage least squares, where
the errors of the two stages jointly follow a non-parametric mixture of normal distributions.

In this paper we also focus on relaxing the identical distribution assumption on the errors,
but in a different scenario from that of Conley et al. (2008). We propose a semi-parametric
Bayesian gls that incorporates the DP prior. The motivation is to explore more information
in the error distribution by allowing their hyper-parameters to differ across observations. The
resulting distribution of the error terms will involve a mixture of normal distributions where
the number of the normal components is influenced by both the prior and the data. We then
introduce two specific cases of semi-parametric Bayesian gls, namely for equation systems and
panel data.

The rest of the paper is organized as follow. In Section 2 we introduce the generic form
of the Dirichlet process, and demonstrate its use as a prior for semi-parametric Bayesian gls.
Then two special cases of the gls are described. The dp-sur method is introduced in Section
3. Sections 3.3 and 3.4 present the simulation design and results, respectively, for the dp-sur.
Two empirical examples are given in Section 3.5. Section 4 motivates and introduces our semi-
parametric Bayesian gls methods for panel data, the dp-rem, and its extension, the dp-crem
is introduced in Section 4.3. Simulation designs and results for the panel setting are in Section
4.4. The dp-rem and dp-crem methods are then applied to two empirical examples in Section
4.5. Section 5 concludes the paper.

2 Bayesian GLS with Dirichlet Process Prior

We introduce the generic Bayesian gls with DP mixture in this section. In Section 2.1 we
briefly review the literature in related areas. Then in Section 2.2 we present how the Dirichlet
process prior can be used to produce a semi-parametric Bayesian gls.

2.1 Literature Review

Bayesian attempts to incorporate heterogeneity in the hyper-parameters of the errors, and con-
sequently in their distributions, can be traced back to Geweke (1993). He introduced a Bayesian
gls where an inverse gamma prior is introduced for variances of the errors, each of which had
a normal distribution. Geweke (1993) demonstrated that such a scale mixture of normal distri-
butions is equivalent to the errors having a t-distribution.

Although the model with the t-distributed errors is flexible, this approach depends upon the
assumption that the normal distributions are mixed with inverse gamma distributed variances.
As pointed out by Koop (2003), relaxing this assumption results in more flexible models, given
that the errors are no longer restricted to having a t-distribution. This can be done by using
a Dirichlet prior (the conjugate prior of a multinomial distribution) to mix a finite number of
normal distributions. The Dirichlet mixture model has emerged as a widely applied methodology
for capturing heterogeneity in both linear and non-linear models, including Allenby et al. (1998),
Li and Tobias (2011) and Chigira and Shiba (2015). However, the main limitation is that it
takes a fairly difficult test procedure to determine the “correct” number of mixing components.

In the wake of this limitation of the Dirichlet mixture model, it seems more reasonable
to let the data and the prior determine the number of normal components jointly. This can
be achieved using a Dirichlet prior of infinite dimension, which is the Dirichlet process (DP)
introduced by Ferguson (1973)3. DP is the conjugate prior for an infinite dimension, non-

3See Teh (2011) and Gershman and Blei (2012) for reviews of the Dirichlet process.
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parametric multinomial distribution. The generic form of the DP can be written as

F ∼ DP (α, F0) , (1)

where α > 0 is the concentration parameter, and F0 is the base distribution. F is a random
distribution that is discrete with probability one4.

The DP is a non-parametric “distribution of distributions” (Escobar and West, 1995 and
1998; MacEachern, 1998), in that a draw, say F , from a DP is a probability distribution itself.
The Chinese restaurant process (Aldous, 1985) provides the the predictive probabilities of the nth

realization, rn, conditioned on the n− 1 existing realizations {r1, r2, . . . , rn−1}, and realizations
from F can be drawn accordingly. Due to the fact that F is discrete, the existing realizations will
be assigned to groups, each with a unique value for all realizations in the same group. Denote
the group id of ri as ci = 1, . . . ,K, and the unique value of group ci as r∗ci : if ri is in group k,
then ri = r∗ci = r∗k. The prediction probabilities of rn is given by

Pr {rn = r∗k|r1, r2, . . . , rn−1} =

{ nk
n−1+α if 1 ≤ k ≤ K

α
n−1+α if k = K + 1 (i.e. rn = r∗K+1 ∼ F0)

, (2)

where nk is the number of realizations that are already in group k. Aldous (1985) showed that
r1, r2, . . . , rn

5 generated according to the Chinese restaurant process are i.i.d. draws from F , i.e.

F |α, F0 ∼ DP(α, F0)

ri|F
iid∼ F.

. (3)

A model with a DP prior on the distribution of parameters is called a DP mixture model
(de Carvalho et al., 2013; Wiesenfarth et al., 2014; Li et al., 2018 and Hejblum et al., 2019),
and is capable of representing very general forms of heterogeneity in the distributions of the
observations. The DP normal mixture model, i.e. one whose mixture components are normal
distributions, can be written as

F |α, F0 ∼ DP(α, F0)

θi|F
iid∼ F

yi|θi ∼ N (θi) ,

, (4)

where θi is the set of parameters of observation yi. In the multivariate normal6 case, θi consists
of the mean vector and covariance matrix, i.e. θi = (µi,Σi).

The posterior probability of θi having the same value as one of the existing θ−i is

Pr {θi = θ∗k|θ−i,yi, α} ∝
nk

n− 1 + α
N (yi|θ∗k) , (5)

where θ∗k and nk denote, respectively, the unique value of group k and the number of observations
already in group k. The posterior probability of θi taking a new value from the base distribution,
i.e. θi = θ∗new ∼ F0, is

Pr {θi = θ∗new|θ−i,yi, α, F0} ∝
α

n− 1 + α

∫
N (yi|θ∗new) p (θ∗new|F0) dθ∗new, (6)

where p (θ∗new|F0) is the probability density of the new value θ∗new given F0. We now introduce
how the DP normal mixture model is applied to introduce a semi-parametric Bayesian gls.

4The level of discreteness is influenced by α, the concentration parameter.
5The realisations r1, r2, . . . , rn generated according to (2) are not independent given that the nth realisation is

generated conditioned on the n−1 realizations before. However, these realisations are exchangeable, and therefore
independent conditional on a distribution F .

6Note that yi is a vector.
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2.2 Semi-parametric Bayesian GLS

Below we introduce the generic form of the semi-parametric gls estimator, where a DP prior is
introduced on the distribution of the hyper-parameters of the errors. Consider a general linear
regression

yi = Xiβ + εi, (7)

where i indexes the observation, yi is a Q × 1 vector of dependent variables, Xi is a Q × K
matrix of explanatory variables, β is a K × 1 vector of coefficients, and εi is a Q× 1 vector of
errors. Our semi-parametric gls estimator introduces a DP prior on the distribution of the error
covariance matrix which will be used to weight the observations. Given the usual assumption
of zero means for the errors then θi = Σi. The hierarchical prior can then be written as

F |α, F0 ∼ DP(α, F0)

Σi|F
iid∼ F.

(8)

Due to the discreteness of F under the DP prior, the value of some covariance matrices Σi will
the same, thus putting Σi into groups denoted by ci. This “grouping” characteristic can help
to reveal the structure of the unobserved heterogeneity in the data.

The gls estimator weights the observations according to their covariance matrix. The like-
lihood of β is then

p
(
yi|β,Σ∗ci

)
=

1

(2π)Q/2
|Σ∗ci |

− 1
2 exp

[
−1

2
(yi −Xiβ)′Σ∗−1ci (yi −Xiβ)

]
. (9)

where Σ∗ci is the unique covariance matrix of group ci. Given the choice of prior for β, one could
generate draws from the posterior of the parameters with mcmc methods.

For the conjugate normal prior for β is specified, i.e.

β ∼ N (b0,V0), (10)

where b0 and V0 denote, respectively, the prior mean and covariance matrix of β. The posterior
of β may then be written as

β|y,Σ∗ci ∼ N (b,V ), (11)

where

V =

(
V −10 +

N∑
i=1

X ′iΣ
∗−1
ci Xi

)−1
, (12)

and

b = V

(
V −10 b0 +

N∑
i=1

X ′iΣ
∗−1
ci yi

)
. (13)

Note that (11), (12) and (13) have the same form as the posterior of the parametric Bayesian
gls estimator assuming i.i.d. normal errors. In the case of the semi-parametric Bayesian gls
estimator, the errors are associated with different hyper-parameters, such that each observation
i is weighted by Σ∗ci . dp-gls is generic, without making any assumptions on the form of the
covariance matrix other than all Σ∗ci being positive definite and symmetric. We now proceed to
explain how the semi-parametric Bayesian gls estimators work in two specific contexts, which
are equation systems in Section 3 and panel data models in Section 4.
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3 Semi-parametric Seemingly Unrelated Regression

Below we introduce the sur equation system and demonstrate how the DP prior is incorporated.
Without loss of generality we consider a system of two equations

y1i = β10 + x11,iβ11 + x12,iβ12 + ε1i

y2i = β20 + x21,iβ21 + x22,iβ22 + x23,iβ23 + ε2i,
(14)

where ymi denotes observation i for equation m (m = 1, 2) and xmk,i (k = 1, 2, 3) are the
explanatory variables. βml (l = 0, 1, 2, 3) denote the coefficients, and εmi are the errors. In this
context, the dimension of each error vector, i.e. Q in Section 2.2 will be the number of equations
in the system.

The model can be written in matrix form

y1 = X1β1 + ε1

y2 = X2β2 + ε2,
(15)

where ym = {ymi}, εm = {εmi} are N×1 vectors. X1 = [ι,x11,x12] andX2 = [ι,x21,x22,x23]
are N × 3 and N × 4 matrices, respectively, where ι is an N × 1 vector of ones. β1 = {β1l} and
β2 = {β2l} are 3× 1 and 4× 1 vectors, respectively.

In the presence of correlated errors there exists an efficiency gain by utilising a system
estimator. The Seemingly Unrelated Regression (sur, Zellner, 1962) was introduced for this

task. Instead of ε1i
iid∼ N (0, σ21) and ε2i

iid∼ N (0, σ22), as in the ols case, the errors εi are now

identically multivariate normally distributed, i.e. εi = (ε1i ε2i)
′ iid∼ N (0,Σ). The covariance

matrix of ε is then

Ω = Σ⊗ I =

[
σ11IN σ12IN
σ21IN σ22IN

]
, s.t. σ12 = σ21, (16)

where ”⊗” stands for the Kronecker product.
One could transform the observations with this covariance matrix, so that the errors fol-

low the standard normal distribution N (0, 1), with the likelihood, prior and posterior of the
parameters defined similarly as in equations (9) to (13)7.

3.1 DP Prior for SUR

Although the sur model accounts for the cross-equation correlation of errors, as Wooldridge
(2003) has noted, the errors are assumed to be identically distributed. Moreover, unlike the
classical gls estimator, this distribution is usually assumed to be normal. In this section we
propose a new dp-sur method that makes no a priori assumptions on the family of distribution
of the errors. If we allow each observation i have its own covariance matrix, flexibility of the error
distribution will lead to identification problems if we only have a cross sectional data. Assigning
the observations into groups represents a compromise. Given (15), the covariance matrix of the
error for observation i is given by

Σi =

[
σ∗11,ci σ∗12,ci
σ∗21,ci σ∗22,ci

]
, s.t. σ∗12,ci = σ∗21,ci , (17)

where ci denotes the group id of observation i, and the superscript ∗ denotes the group-specific
hyper-parameter. For ci = cj , i, j ∈ {1, 2, . . . , N} observations i and j share the same group id

7However, the covariance matrix Ω has a specific form as in the sur in (16), instead of the general, positive
definite symmetric form of a covariance matrix.
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and hyper-parameters, such that σ∗pq,ci = σ∗pq,cj , where p, q ∈ {1, 2} index the equations in the
system.

Assuming that the number of groups are known, the Dirichlet prior may be used to perform
the mixing. A less restrictive approach utilises a non-parametric approach by introducing a
DP prior for the distribution of Σi as in (8). A natural choice of the base distribution F0 is
the conjugate prior for the covariance matrix of a multivariate normal distribution, the inverse
Wishart distribution, i.e.

F0 ≡ IW(ν,W ) (18)

where ν, W are hyper-parameters of the inverse Wishart distribution. Given (18) the posterior
distribution of each Σi is also inverse Wishart, which is easy to draw from using the Gibbs
sampler. The main difference from the parametric Bayesian sur is that the covariance matrix
of each observation is now given in (17), which allows each group of observations to have its own
unique values for the parameters.

3.2 MCMC Algorithm

A Gibbs sampler (see Geweke, 1996) is available for the sur model. The Gibbs sampler draws
two sets of parameters from their posteriors: the covariance matrix of the errors Σ and the
regression parameters β, namely

Σ|y,X,β (19)

β|y,X,Σ. (20)

When introducing the hierarchical structure which includes the DP prior, a number of extra
parameters are included in the mcmc algorithm. These are the covariance matrices of the errors,
Θ = {Σi}, and α, the concentration parameter of the DP prior. The Gibbs sampler now consists
of

Θ|y,X,β, α (21)

β|y,X,Θ, α (22)

α|y,X,β,Θ. (23)

The major difference between the two Gibbs sampler lies in (19) and (21). In (19) the errors
have the same covariance matrix Σ. In contrast, there will be K ≤ N unique values in Θ in
equation (21) due to the discreteness of F under the DP prior; observations with the same value
of Σi are assigned to the same group. With the last draw of β, the residuals can be obtained,
which are used as the data to take a draw for Θ.

In making draws of the concentration parameter α using (23), we adopt the DP prior intro-
duced by Conley et al. (2008), namely

p(α) ∝
(

1− α− αmin
αmax − αmin

)τ
, (24)

where αmin and αmax are the pre-set lower and upper bound of α. Larger α lead to more groups
being generated on average, i.e. the DP being less discrete. According to the distribution of
the number of groups K conditioned on α in Antoniak (1974), we could determine αmin and
αmax by setting the mode of number of groups to Kmin and Kmax. In this paper we let Kmin

be 1 and Kmax be 5% of the number of observations. Following the suggestion of Conley et al.
(2008), we set τ to 0.8. The hyper-parameters αmax has been adjusted according to Kmax being
10% and 50% of the sample size. In our experiments the results are insensitive to these changes
in the hyper-parameters in the prior of the concentration parameter α.
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3.3 A Simulation Experiment

In this section we conduct a simulation experiments designed to compare our method to the
Bayesian sur described in Section 3. As the main focus of this paper is the potential efficiency
gains over gls type estimators, we evaluate the performance of the dp-sur and normal Bayesian
sur focusing upon the posterior standard deviations of the parameters estimated with the two
methods. All simulation experiments are based upon the two equation system in (14).

The experiments are designed to highlight the performance of the estimators along the fol-
lowing dimensions:

(i) heterogeneity in the errors;

(ii) the tail of the error distribution;

(iii) sample size.

For (i) we check the performance of our dp-sur approach against a model where the errors
are distributed i.i.d. multivariate normal. In the heterogeneous case, the most direct way is
to generate the errors from a mixture of multivariate normal distributions8. However, we use
multivariate t-distributions (Andrews and Mallows, 1974) to exploit the scale mixtures of normal
distributions with inverse Wishart covariance matrices.

To accommodate (ii), we vary the degrees of freedom (df) of the multivariate t-distribution.
Smaller degrees of freedom leads to heavier tails, which indicates that a larger proportion of
observations follow normal distributions that are “flatter”, i.e. less concentrated around the
mean.

To determine the robustness of our method, we include a set of simulations where the errors
follow a log-normal distribution. The log-normal distribution has seen a wide range of applica-
tions in empirical studies. For example, with perhaps the exception of the top 1-3 percent of the
population, income has been shown to follow a log-normal distribution (Clementi and Gallegati,
2005). In addition, extreme realizations are more likely to be generated from the multivariate
log-normal distribution, as it is fat-tailed.

Using (15), the explanatory variables are drawn from normal distributions with parameters

x11,i
iid∼ N (1, 1), x12,i

iid∼ N (3, 1),

and
x21,i

iid∼ N (−2, 1), x22,i
iid∼ N (4, 1), x23,i

iid∼ N (−1, 1). (25)

We set β1 = (1.0,−0.5, 1.6)′ and β2 = (1.5,−1.2,−0.7, 2)′. We generate errors from the multi-
variate normal distribution N (0,Σ), where

Σ =

[
1 0.5

0.5 1

]
. (26)

Without loss of generality, we let the variances be identical, and fix the correlation between the
errors in the two equations at 0.5. We set three samples sizes for the simulation experiment:
100, 250, and 500.

When generating errors from a multivariate t-distribution, we set the location parameter to
µ = 0 and shape parameter to Σ. As noted, the parameter that controls the tail behaviour of

8Simulating data from a mixture of multivariate normal distributions can be problematic given the influence
of the following: the number of components, the covariance matrices (we fix the mean at zero) of the normal
components and the weights assigned to each component.
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multivariate t-distributions is the df. We set the df to 29, 3 and 4. For df=2 the tails of the
corresponding multivariate t-distribution are much heavier than that of the multivariate normal
with the same location and shape parameters µ and Σ. When the df is 4, the tails of the
multivariate t-distribution are only slightly heavier than the multivariate normal. Our dp-sur
should demonstrate relative efficiency in all three situations, as the multivariate t-distributions
has heavier tails than the multivariate normal. Gains in efficiency will be decreasing in df, given
that the tails are less heavy.

The errors in the multivariate log-normal scenario are constructed by first drawing from
multivariate normal distributions, and then taking the natural exponent of these draws. Because
the log-normal distribution has a positive mean, it is necessary to demean, so that the errors
will have zero means. Our dp-sur is expected to have efficiency gains in the log-normal case
given it is asymmetric and heavy tailed.

3.4 DP-SUR Simulation Results

Below we present the simulation results10. We present the posterior standard deviations (s.d.)
estimated with both our dp-sur method and the Bayesian sur assuming multivariate normal
errors, along with the percentage differences between them11. As the behaviour of the posteriors
of all the parameters are uniformly similar, for the sake of clearness, we present only the results
regarding β11 and β21

12.

Multivariate t-distributed Errors

Table 1 presents the posterior s.d.s and the percentage difference13 between the s.d. estimated
with the dp-sur and the normal sur, both averaged over the samples. We observe that the
dp-sur gives smaller posterior s.d when df is 2, 3 and 4. The percentage differences when df is
2 are above 40%, above 20% when df is 3, and around 15% when df is 4 as shown in the upper
three panels of the table. Efficiency gains increase with sample size as more extreme values of
the errors are realised. The parametric sur assumes that all the realizations have the same Σ,
where the extreme ones will expand this Σ shared by all realizations. In contrast, these extreme
realizations will be assigned to distributions with larger Σi’s by the dp-sur, while the rest will
be treated as realizations from normal distributions with smaller Σi’s. By accommodating a
higher degree of heterogeneity in the error distributions, potentially more efficiency gains could
be achieved by the dp-sur.

Our results are consistent with expectations. The efficiency gains of the semi-parametric
dp-sur are the largest when the df is 2 (with the heaviest tails). Efficiency gains fall with the
df increasing, given less heavy tails of the distribution of the errors. In fact, the lowest panel
in Table 2 where the df is infinity, we observe that the posterior s.d. estimated with the two
methods are very close. The s.d. for dp-sur is slightly larger than their sur counterparts. This
is not surprising since when the distribution of the errors is multivariate normal, the parametric
method is more parsimonious, using the correct structure for the covariance matrix of the errors.
In the multivariate normal case, among the three sample sizes, the differences between the s.d.
are the largest14 when the sample size is 100. This is expected as the information “wasted” by

9We do not use df 1, as the t distribution does not even have a mean in this case.
10We carry out 100 simulations for each sample size, which proved sufficient to achieve stable results even with

the smallest sample size.
11The tables containing the posterior means can be found in the Appendices. For the tables of posterior means,

there are 6 columns presenting the means estimated by the two methods for the 3 correlations.
12The full results are included in Appendices.
13∆% = (s.d.sur − s.d.dp)/s.d.sur × 100%.
14Nevertheless, the differences are still small in magnitude, less than 2.5% for all coefficients.
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the less parsimonious dp-sur in this case has a larger impact on efficiency when the sample size
is small.

Table 1: Posterior s.d., multivariate t errors

df = 2

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β11 0.1149 0.2155 41.57% 0.0732 0.1596 49.56% 0.0458 0.1126 54.22%
β21 0.1107 0.2080 41.49% 0.0649 0.1359 48.48% 0.0508 0.1198 52.78%

df = 3

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β11 0.1114 0.1452 21.20% 0.0708 0.0973 26.05% 0.0446 0.0634 28.53%
β21 0.1079 0.1397 20.63% 0.0630 0.0866 25.91% 0.0488 0.0694 28.70%

df = 4

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β11 0.1079 0.1248 13.52% 0.0696 0.0826 15.22% 0.0440 0.0529 16.58%
β21 0.1054 0.1200 12.15% 0.0618 0.0733 15.08% 0.0473 0.0582 18.41%

df = ∞

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β11 0.0854 0.0837 -2.09% 0.0569 0.0565 -0.85% 0.0372 0.0371 -0.56%
β21 0.0879 0.0860 -2.25% 0.0575 0.0572 -0.58% 0.0388 0.0384 -1.14%

Multivariate Log-normal Errors

The posterior s.d.s are presented in Table 2. We observe that the dp-sur posterior s.d. are
more than 55% smaller than those calculated using the Bayesian sur assuming i.i.d. normal
errors. The efficiency gains increase with sample size, which reach more than 65% in the case
of 500 observations. As with the case of t distributed errors, this is due to the fact that more
extreme realizations of errors are present in larger samples, leading to more efficiency gains by
grouping them.

Table 2: Posterior s.d., multivariate log-normal errors

Log-normal

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β11 0.0720 0.1831 57.64% 0.0415 0.1266 65.06% 0.0272 0.0834 66.61%
β21 0.0800 0.2119 58.78% 0.0439 0.1277 64.38% 0.0270 0.0826 66.39%

3.5 DP-SUR Empirical Examples

Below we apply our dp-sur method to an economic model of the demand for factors of pro-
duction with a generalized Leontief cost function (Diewert, 1971), an equation system with the
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number of equations as that of factors.15 To make our empirical demonstration as general as
possible, we do not impose symmetry or homogeneity restrictions.

The dataset, taken from Malikov et al. (2016), contains 2397 observations on 285 large U.S.
banks between 2001 and 2010. The data includes quantities and prices of the inputs, i.e. labour,
physical assets and borrowed funding, and the quantity of output, which is the loans made by a
bank. Given the relatively large sample size, it is possible for us to explore the performance of
the dp-sur with different sample sizes.

The demand for factors equation system may be written as

aL =
L

Y
= βLL + βLA

PA
PL

+ βLF
PF
PL

+ βLTT + εL (27)

aA =
A

Y
= βAA + βAL

PL
PA

+ βAF
PF
PA

+ βATT + εA (28)

aF =
F

Y
= βFF + βFL

PL
PF

+ βFA
PA
PF

+ βFTT + εF , (29)

where L, A and F denote the quantity of labour, physical assets and borrowed funds, respec-
tively; T denotes the trend variable; Y denotes output, and Pk is the price of factor k, with
k ∈ {L,A, F}. For the errors we assume (εLi, εAi, εFi) ∼ N (0,Σi) where Σi is the covariance
matrix of observation i. We allow the errors to be correlated across the three equations in the
system, i.e. cov (εki, εsi) 6= 0, with k, s ∈ {L,A, F} indexing equations.

Given that the main objects of interest are the price elasticities, we report the posterior
means and s.d. of the price elasticities of the three factors. With the generalized Leontief cost
function, the cross price elasticities of the factors are given by

eks =
1

2

βks (Pk/Ps)
−1/2

ak
, ∀k 6= s, (30)

The own price elasticities are

ekk = −1

2

∑
s 6=k βks (Pk/Ps)

−1/2

ak
. (31)

Table 3 contains the posterior means of the price elasticities of the demand for factors. One
can see that with both the 800 observation sub-sample and the full sample, the posterior means
of all the elasticities are relatively small indicating that the demand for factors (labour, physical
assets and borrowed fundings) of U.S. banks are relatively price inelastic.

Note that the own price elasticities of labour and physical assets are negative in both samples.
In contrast, the own price elasticity of borrowed fundings is positive, although we note that the
absolute values are extremely small16 compared to those of the labour and physical assets. This
shows that the demand for borrowed fundings is inelastic in the production of the U.S. banking
industry. One potential reason is that borrowed funds are usually used in ways such as to
meet the required reserve ratio set by the Fed. Such a feature makes borrowed fundings rather
inelastic with respect to their price.

There are some differences between the posterior means estimated with the dp-sur and the
Bayesian sur assuming normal errors. Such differences are not observed in the simulation stud-
ies. However, it should be noted that in the simulations, the regression equation was correctly
specified, which is not guaranteed with the empirical data. Such differences in the posterior

15Note that the sur and ols estimators are exactly the same when all the equations in the system share the
same explanatory variables.

16The posterior s.d. are also relatively large for this elasticity as shown in Table 4.
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means with empirical datasets have also been observed in the literature on semi-parametric
mixture with a DP prior, including Conley et al. (2008).

Table 3: Elasticities, U.S. banking industry: posterior means

800-observation sub-sample

Input Labour Assets Fundings

Parameters DP SUR DP SUR DP SUR

Wage -0.189 -0.422 0.375 0.254 -0.016 -0.007
Asset Price -0.009 0.131 -0.690 -0.585 0.012 0.002

Funding Price 0.198 0.291 0.315 0.331 0.004 0.004

Full sample, 2397 observations

Input Labour Assets Fundings

Parameters DP SUR DP SUR DP SUR

Wage -0.149 -0.201 0.406 0.385 0.004 -0.001
Asset Price -0.094 -0.068 -0.686 -0.668 -0.016 -0.005

Funding Price 0.243 0.270 0.280 0.283 0.012 0.006

Table 4 presents the posterior s.d. of the price elasticities estimated with the two samples.
We observe that the dp-sur achieves smaller posterior s.d. for all the price elasticities than the
Bayesian sur assuming normality. This is not unexpected, as the elasticities are functions of the
regression parameters in the equation system, which are estimated with smaller posterior s.d.
with the semi-parametric dp-sur than the parametric Bayesian sur. The greatest percentage
difference (∆%) with the 800-observation sub-sample takes place with the cross price elasticity
of the demand for labour with respect to the price of physical assets, for which the dp-sur
posterior s.d is 38.27% smaller than the sur counterpart. With the full sample, the largest
percentage difference is observed with the cross price elasticity of the demand for borrowed
fundings with respect to the price of physical assets, which reached 39.15%.

Table 4: Elasticities, U.S. banking industry: posterior s.d.

800-observation sub-sample

Input Labour Assets Fundings

Price DP SUR ∆% DP SUR ∆% DP SUR ∆%

Wage 0.0341 0.0541 36.99% 0.0438 0.0484 9.60% 0.0276 0.0305 9.52%
Asset Price 0.0228 0.0369 38.27% 0.0304 0.0359 15.22% 0.0160 0.0230 30.59%

Funding Price 0.0236 0.0381 38.02% 0.0267 0.0317 15.82% 0.0148 0.0160 7.16%

Full sample, 2397 observations

Input Labour Assets Fundings

Price DP SUR ∆% DP SUR ∆% DP SUR ∆%

Wage 0.0189 0.0222 14.97% 0.0198 0.0210 6.01% 0.0102 0.0147 30.74%
Asset Price 0.0106 0.0131 19.38% 0.0143 0.0151 5.21% 0.0067 0.0110 39.15%

Funding Price 0.0154 0.0178 13.68% 0.0157 0.0161 2.48% 0.0081 0.0098 17.43%

In Figure 1 we present the histograms for the posterior distribution for the cross price
elasticity of funding with respect to the price of physical assets for the dp-sur and the parametric
Bayesian sur. Using the smaller 800-observation sub-sample, the posteriors for both estimators
include 0. However, with the full sample the dp-sur gives a posterior distribution that has a
95% credible interval (from -0.027 to -0.002) that excludes 0, shown by the two red vertical lines
in the left panel. In contrast, the right panel shows that the parametric Bayesian sur gives a
95% credible interval (from -0.027 to 0.016) that still includes 0 even with the full sample. From
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Figure 1 we also note that the posterior distribution with the dp-sur is strongly right skewed,
which can result in the parametric Bayesian sur having larger posterior standard deviation.

(a) dp-sur (b) Parametric sur

Figure 1: Histograms of the elasticity of fundings w.r.t. asset price

4 Semi-parametric Approach to Random Effects Model

In addition to equation systems, the random effects model (rem) for panel data is another
scenario where the gls has seen numerous applications. In a panel with N cross sections and
time series of dimension T , the error of each individual17 is a T × 118 vector. We will relax the
assumption of parametric Bayesian gls for the rem (Koop, 2003) that the error vectors for all
individuals have the same distribution. In this section we propose a semi-parametric Bayesian
approach by introducing DP priors on the variances of the random effects and the errors. We
follow the same approach as in the dp-sur method in terms of applying the DP prior on the
hyper-parameters.

Consider the following panel data model

yit = β1x1it + · · ·+ βKxKit + ui + ηit = β1x1it + · · ·+ βKxKit + εit, (32)

where i and t index the cross section and time series dimensions of the data, respectively, yit is
the dependent variable, xkit denote the explanatory variables, and the βk, k = 1, . . . ,K are the
coefficients. ui is the time-invariant unobservable of individual i, and ηit the error term.

In Bayesian methods the difference between the fixed and random effects lies in the choice
of prior for the individual effects ui. Fixed effects Bayesian methods assume a non-hierarchical
prior for ui, while for the random effects a hierarchical prior is assumed. The prior for ui may
be written as

ui|d2
iid∼ N

(
0, d2

)
, (33)

where d2 is the variance19 of ui. Assuming ηit
iid∼ N (0, σ2), the posterior distribution of ui is

given by
ui|yi,β, d2, σ2 ∼ N

(
µi, s

2
)
, (34)

17We use the term “individual” to denote the cross section unit here. In practice it can be households, firms,
countries or actual individuals.

18That is, the Q in the generic semi-parametric gls in Section 2.2 is T in this context. We use T here following
panel data protocols.

19Note that the variances of ui and ηit is often assumed to be random, and have their own priors. For the
moment we leave them fixed for the sake of simplicity.
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where µi = s2σ−2ι′T (yi −Xiβ), s2 = (d−2 + σ−2ι′T ιT )−1, with ιT denoting a T × 1 unit vector.
Xi = [x1it, . . . , xKit] is a T ×K matrix of explanatory variables, and yi = [yi1, yi2, . . . , yiT ]′ is a
T × 1 vector.

The likelihood of β marginalized over ui in the Bayesian rem may be written as

p (yi|β,Σ) =
1

(2π)T/2
|Σ|−

1
2 exp

[
−1

2
(yi −Xiβ)′Σ(yi −Xiβ)

]
, (35)

where Σ is the covariance matrix of the T × 1 vector εi = [εi1, εi2, . . . , εiT ]′. Assuming that
E [ηituj |X] = 0, ∀ i, j, t (Greene, 2012), the covariance matrix of the composite error εi is

Cov(εi) = Σ = σ2IT×T + s2ιT ι
′
T =


σ2 + s2 s2 · · · s2

s2 σ2 + s2 · · · s2

...
...

. . .
...

s2 s2 · · · σ2 + s2

 , (36)

where σ2 is the variance of ηit, and s2 is the variance of ui.

4.1 DP Prior for REM

Before we proceed to our dp-rem method, we review the work of Kleinman and Ibrahim (1998)
and Kyung et al. (2010), who use the Dirichlet process prior for a different purpose.20 Consider
the model

yit = Xitβi + ζit, (37)

where βi is the vector of parameters. In the literature in this area, the focus has been on the
heterogeneity in the parameters (i.e. βi) across the individuals. For this purpose, the DP prior
is put on the parameters βi themselves, i.e.

F ∼ DP (α,N (µβ,Σβ))

βi|F
iid∼ F.

(38)

Given that βi has a discrete dp posterior, βi are grouped, with those in the same group having
the same value.

Heterogeneity in the parameters per se is not the principle focus of this paper. Rather, this
paper aims at providing more efficient inferences by exploiting the information in the distri-
bution of unobservables. In a rem setting, unobservables are composed of individual specific
unobserved effects ui and idiosyncratic errors ηit. Therefore, we focus on the heterogeneity in
hyper-parameters of these unobservables instead of the model parameters. In this sense, our
method is in the same spirit as the literature pioneered by Conley et al. (2008).

We relax the identically distributed assumption for ηit and ui, by introducing DP priors on
the variances. This will have the effect of grouping errors over both the cross section dimension i
and the time series dimension t, with those in the same group sharing the same hyper-parameter.

The DP prior for the variance of the idiosyncratic error ηit is

G ∼ DP (αη, G0)

σ2it|G ∼ G,
(39)

where αη and G0 denote the concentration parameter and base distribution of the DP prior,
respectively. The grouping of these variances will take place without imposing any restrictions.

20The random effects model in these researches, mostly in statistics, means different from that in econometrics,
as theirs is in fact random coefficients model.
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For example, for cit 6= cis
21 (t 6= s), then σ∗2cit and σ∗2cis are allocated to different groups and ηit

and ηis have different distributions.
The DP prior for the variance of the individual effects ui in our dp-rem can be written

using the following hierarchical structure

F ∼ DP (αu, F0)

d2i |F ∼ F.
(40)

d2i is the prior variance of the random effects ui, αu is the concentration parameter, and F0 the
base distribution of the DP prior. The use of an independent DP prior on the hyper-parameters
of individual effects ui generates groupings over the N individuals such that that ui that belong
to the same group are generated from a distribution with the same hyper-parameter. This then
relaxes the rem assumption that the individual effects are identically distributed.

Although the ui are no longer identically distributed, for each particular ui a conjugate
normal prior22 can be introduced. The posterior of each ui is then a normal distribution, the
means and variances of which are different across the cross section i, i.e.

ui|y,β, d∗2ci , σ
∗2
cit ∼ N

(
µi, s

2
i

)
, (41)

where
µi = s2i ι

′
TΣ−1ηi (yi −Xiβ) (42)

is the posterior mean of ui. The posterior variance is given by

s2i =
(
d∗−2ci + ι′TΣ−1ηi ιT

)−1
. (43)

From (43) we observe that the posterior variance of the random effects ui is the sum of d∗−2ci the
inverse of the unique value of d2i (the hyper-parameter of ui), and all the elements in Σηi . As
we allow that Σηi 6= Σηj (∀i 6= j), s2i is in turn allowed to be different for each individual effect
ui.

The covariance matrix of each composite error vector εi is also allowed to be different for
every i. The covariance matrix of εi is given by

Cov(εi) = Σi = Σηi + s2i ιT ι
′
T . (44)

4.2 MCMC Algorithm

For the choice of base distributions, we use the inverse gamma distribution, the conjugate prior
for the variance of a normal distribution, i.e.

F0 ≡ IG (au, bu)

G0 ≡ IG (aη, bη) ,
(45)

where au and aη are the shape hyper-parameters, and bu and bη denote, respectively, the rate
hyper-parameters of F0 and G0.

The likelihood of β marginalized over ui is given by

p (yi|β,Σi) =
1

(2π)Q/2
|Σi|−

1
2 exp

[
−1

2
(yi −Xiβ)′Σ−1i (yi −Xiβ)

]
. (46)

21cit (cis) denotes the group id’s of ηit (ηis).
22Here we adopt a prior whose mean is 0, and variance is 1000.
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Compared with the marginal likelihood of the parametric Bayesian rem in (35), the covariance
matrix of the composite error vector εi is allowed to be different for each individual i in the
panel.

Given a conjugate normal prior for β, i.e.

β ∼ N (b0,V0),

where b0 and V0 denote respectively, prior mean and covariance matrix of β, the posterior of β
marginalized over ui is

β|y, d∗2ci , σ
∗2
cit ∼ N (b,V ). (47)

V =

(
V −10 +

N∑
i=1

X ′iΣ
−1
i Xi

)−1
, (48)

denotes the posterior covariance matrix, and b is the posterior mean vector, which we write as

b = V

(
V −10 b0 +

N∑
i=1

X ′iΣ
−1
i yi

)
. (49)

For Θη = {σ2it}, U = {ui}, and Θu = {d2i }, a Gibbs sampler for this dp-rem can be written as:

Θη|y,X, U,β,Θu, αu, αη

Θu|y,X, U,β,Θη, αu, αη

U |y,X,β,Θu,Θη, αu, αη

β|y,X, U,Θu,Θη, αu, αη

αu|y,X, U,β,Θu,Θη, αη

αη|y,X, U,β,Θu,Θη, αu.

(50)

The Gibbs sampler for the regression parameters, hyper-parameters and concentration pa-
rameters of the two DP are similar to those for the dp-sur in Section 3.2. In the dp-rem, the
random effects have a mixture of normal distributions. The posterior mean and variance of each
particular ui are in (42) and (43), respectively. For each i a ui is drawn from N

(
µi, s

2
i

)
with

the Gibbs sampler.

4.3 Correlated Random Effects Model

The Correlated Random Effects Model (crem) represens a natural extension of the rem. In-
troduced by Mundlak (1978) and further discussed by Chamberlain (1980), the crem offers a
middle ground between the fixed and random effects.

Without loss of generality, we consider the following model for the panel data

yit = β1x1it + β2x2it + vi + ηit, (51)

where vi is the random effects. While maintaining the gls structure of the rem, crem allows the
individual effects to be correlated with Xi, representing the correlation using a linear function
of the means of Xi, i.e.

vi = β3x̄1i + β4x̄2i + ui, (52)

The crem model is then

yit = β1x1it + β2x2it + β3x̄1i + β4x̄2i + ui + ηit (53)

The DP prior can be introduced on the hyper-parameters of ui and ηit as in the rem case.
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4.4 DP-REM/CREM Simulation Results

We carry out a series of simulation experiments to demonstrate the performance of our dp-
rem and dp-crem methods relative to the standard Bayesian rem and crem. The simulation
experiments have been designed for the same purpose as those for the dp-sur in Section 3.3.

For the rem model we assume

yit = β1x1it + β2x2it + ui + ηit = β1x1it + β2x2it + εit (54)

where the explanatory variables are generated from the following normal distributions

x1,it
iid∼ N (1, 1), x2,it

iid∼ N (3, 1).

We set the coefficients in (54) to

β1 = 5, β2 = 10.

The coefficients in the crem model (53) are set to

β1 = 5, β2 = 10, β3 = −2, β4 = 2. (55)

Below we present the simulation results. We first report the results where the errors, ui and
ηit, are assumed to follow t-distributions and then those with log-normal distributions.

t-Distributed Random Effects and Errors

Table 5 reports the averages of the posterior s.d.s of the rem coefficients estimated with both
methods, and the average of the percentage differences between the dp-rem and rem posterior
s.d.s. The largest differences between the two estimators with respect to the posterior s.d.
are observed when df = 2, where the t-distributions of the random effects and the errors have
the heaviest tails. As expected, these differences decrease as the df increase, where the tails
of the t distributions become less ’heavy’. In the bottom panel where the errors have normal
distributions (equivalent to df being infinity), the dp-rem and normal rem posterior s.d. are
almost equivalent, as the t-distribution is the normal distribution in this case.

We also note that the percentage differences increase slightly when the sample size becomes
larger for all three finite df. This is expected given that there are more extreme realizations in
larger samples, and our dp-rem method detects such heterogeneity and assign them into the
same group. In contrast, the Bayesian rem method assuming normality flattens the normal
posterior distribution for the extreme values, leading to larger posterior s.d.

Table 6 reports the averages of posterior s.d. of the crem coefficients, and the averages
percentage differences between the two estimators. β1 and β2 denote the two original explanatory
variables, whereas β3 and β4 capture the effect of the respective sample means for each individual
in the panel. The findings are similar to the rem case in that the percentage differences between
the posterior s.d. estimated with our dp-crem and the parametric Bayesian crem are the
largest with df equal to 2, and decrease with the increase in the df. Differences between the
two methods regarding the posterior s.d. are almost zero when the df is infinity, when the
t-distribution becomes normal distribution. The percentage differences also increase slightly in
the three finite df cases when the sample size becomes large due to more extreme values in the
unobservables.
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Table 5: Posterior s.d., rem with t distributed unobservables

df = 2

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0751 0.1419 43.18% 0.0484 0.0956 47.88% 0.0340 0.0671 47.92%
β2 0.0499 0.0883 41.45% 0.0316 0.0575 47.04% 0.0213 0.0422 48.50%

df = 3

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0627 0.0803 20.61% 0.0366 0.0475 22.36% 0.0290 0.0379 22.94%
β2 0.0419 0.0530 20.05% 0.0237 0.0309 22.65% 0.0183 0.0242 24.12%

df = 4

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0588 0.0667 11.51% 0.0346 0.0393 11.54% 0.0270 0.0310 12.59%
β2 0.0394 0.0442 10.66% 0.0225 0.0257 12.15% 0.0171 0.0198 13.67%

df = ∞

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0484 0.0484 -0.02% 0.0274 0.0274 -0.20% 0.0211 0.0210 -0.19%
β2 0.0301 0.0301 0.03% 0.0180 0.0179 -0.45% 0.0139 0.0139 0.01%

Log-normal Distributed Random Effects and Errors

Table 7 contains the average of posterior s.d. estimated with the dp-rem and normal rem, and
the percentage differences between them. It can be seen that our dp-rem posterior s.d. are
smaller than those estimated by Bayesian rem assuming normality in all cases. Due to the fact
that the log-normal distribution is heavy tailed, the percentage differences are more than 70%
in all cases, which increase slightly when the sample size gets larger.

The posterior s.d. of the dp-crem and crem averaged over the simulated samples are
reported in Table 8, along with the average of the percentage difference between the two s.d.
ASs before, the posterior s.d. estimated with our dp-crem are more than 70% smaller than
those estimated with the normal Bayesian crem for all coefficients. The percentage differences
also increase when the sample size increases

4.5 DP-REM/CREM Empirical Examples

In this section we present the results based upon two empirical examples. In the first we estimate
the cost function of U.S. banks, and in the second we estimate the wages of U.S. workers.

Bank Cost Function

We first apply our dp-rem and dp-crem methods to the dataset in Feng and Serletis (2009)
on the costs of 218 U.S. banks whose assets are between 1 and 3 billion dollars (2000 value),
covering a period of 8 years from 1998 to 2005. There are three inputs, labour, borrowed funds
and physical capital; and three outputs, consumer loans, non-consumer loans and securities.
The functional form is the simple translog cost function (Christensen and Greene, 1976). For
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Table 6: Posterior s.d., crem with t distributed unobservables

df = 2

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0860 0.1482 41.82% 0.0446 0.0935 48.33% 0.0394 0.0765 49.06%
β2 0.0793 0.1409 41.60% 0.0471 0.0978 48.84% 0.0371 0.0790 50.10%
β3 0.3665 0.6575 37.62% 0.2743 0.4854 42.63% 0.1595 0.3255 48.31%
β4 0.1545 0.2768 40.26% 0.1197 0.2001 43.61% 0.0671 0.1412 49.43%

df = 3

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0689 0.0887 21.09% 0.0368 0.0472 21.51% 0.0294 0.0387 23.24%
β2 0.0659 0.0845 20.99% 0.0383 0.0493 21.96% 0.0304 0.0398 22.92%
β3 0.3077 0.3884 18.53% 0.1833 0.2434 23.10% 0.1373 0.1825 24.09%
β4 0.1279 0.1619 19.54% 0.0749 0.0989 23.23% 0.0575 0.0763 24.06%

df = 4

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0639 0.0723 11.29% 0.0345 0.0399 12.97% 0.0256 0.0299 14.09%
β2 0.0607 0.0689 11.60% 0.0358 0.0414 13.09% 0.0263 0.0306 14.04%
β3 0.2857 0.3175 9.35% 0.1740 0.1982 11.91% 0.2547 0.2944 12.80%
β4 0.1177 0.1316 10.09% 0.0707 0.0808 12.25% 0.0915 0.1056 12.78%

df = ∞

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0518 0.0517 -0.31% 0.0295 0.0295 -0.14% 0.0228 0.0228 -0.02%
β2 0.0503 0.0502 -0.25% 0.0298 0.0296 -0.59% 0.0225 0.0224 -0.59%
β3 0.2427 0.2416 -0.51% 0.1359 0.1365 0.34% 0.1076 0.1075 -0.10%
β4 0.0952 0.0951 -0.13% 0.0586 0.0586 0.03% 0.0431 0.0431 -0.26%

Table 7: Posterior s.d., rem with log-normal distributed unobservables

Log-normal

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0733 0.3656 79.56% 0.0384 0.2228 82.43% 0.0305 0.1788 82.86%
β2 0.0608 0.2350 73.37% 0.0311 0.1471 78.75% 0.0240 0.1163 79.02%

Table 8: Posterior s.d., crem with log-normal distributed unobservables

Log-normal

Sample size 100 300 500

Parameters DP REM ∆% DP REM ∆% DP REM ∆%

β1 0.0754 0.3920 81.45% 0.0381 0.2479 85.24% 0.026 0.199 86.67%
β2 0.0769 0.3785 81.37% 0.0390 0.2578 85.15% 0.024 0.194 87.17%
β3 0.7722 1.7634 67.37% 0.3002 1.1358 74.96% 0.157 0.898 80.77%
β4 0.3342 0.7583 70.91% 0.1080 0.4828 78.79% 0.063 0.378 82.24%
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industry i with n inputs and m outputs we write

lnCit =

m∑
j=1

αj lnqj,it +
1

2

m∑
j=1

m∑
k=1

δjklnqj,it · lnqk,it +

n∑
r=1

βrlnpr,it

+
1

2

n∑
r=1

n∑
s=1

φrslnpr,it · lnps,it +
n∑
r=1

m∑
j=1

γrj lnpr,it · lnqj,it + ui + ηit.

(56)

where C is cost, qj is output quantity j, and pr is input price r. We impose the linear homogeneity
in input prices on the cost function, which in the translog case can be expressed as

n∑
r=1

βr = 1,

n∑
s=1

φsr = 0, r = 1, 2, . . . , n,

n∑
r=1

γrj = 0, j = 1, 2, . . . ,m.

(57)

Table 9 contains the posterior means and s.d. of the free coefficients in the rem. To
differentiate the inputs from outputs, we index the three outputs with numbers, and index the
inputs by letters, with l and f denoting, respectively, labour and borrowed funds. The posterior
mode of the number of groups23 in the random effects is 2, and that in the errors is 3, which
shows the existence of heterogeneity, although it is not strong.

The posterior means of all the coefficients for first order terms (the β’s and α’s) are of the
same magnitude with the two methods with the exception of α1 for customer loans, but it is
insignificant with the rem. Although a number of the coefficients for the crossproduct terms
have different signs across the two methods, the coefficients are not significant. Consistent with
the detection of heterogeneity in the random effects and the errors, the posterior s.d. of our
dp-sur method are smaller than those estimated by parametric Bayesian rem for all coefficients.
Most of the percentage differences presented in the last column are more than 10%, with the
largest being 24.51% for δ33.

We also estimate the model with the dp-crem. The posterior mode of the number of
groups in the random effects and the errors are 2 and 3, respectively, indicating the existence of
heterogeneity. The coefficients of the explanatory variables have smaller dp-crem posterior s.d.
than their crem counterparts, with similar magnitudes as in Table 9. However, the regression
parameters are all highly insignificant for the sample means of the explanatory variables, as
their posterior s.d. are very large compared with their posterior means. This indicates that the
data do not support the crem specification24.

U.S. Individual Wage

In this section we present the results of a wage model for U.S. workers using the data in Cornwell
and Rupert (1988). The data covers 595 individuals over a period of 7 years, from 1976 to
1982. This sample size allows us to demonstrate our method with sub-samples of 100 and 250
individuals.

23The number of groups, i.e. the number of normal distributions that are being mixed, is also a random variable
in Bayesian methods. Its posterior mode thus provides an indication of the strength of heterogeneity in the error
distributions.

24The results are not presented here, but are available on request.

19



Table 9: U.S. Bank Cost Function rem

Mean S.D.

Coefficients DP-REM REM DP-REM REM ∆%

βl -0.6583 -0.6099 0.1480 0.1795 17.56%
βf 1.4475 1.0758 0.1068 0.1091 2.12%
α1 -0.1908 -0.0240 0.0799 0.0944 15.35%
α2 0.6870 0.5777 0.1405 0.1562 10.05%
α3 0.9486 0.8439 0.1284 0.1558 17.55%
φll 0.1087 0.0405 0.0170 0.0214 20.44%
φff 0.1670 0.1266 0.0055 0.0071 22.37%
φlf -0.1664 -0.0891 0.0079 0.0097 18.57%
δ11 0.0141 0.0145 0.0033 0.0041 20.02%
δ22 0.1267 0.1098 0.0192 0.0218 12.13%
δ33 0.0934 0.1030 0.0134 0.0178 24.51%
δ12 0.0033 -0.0113 0.0067 0.0082 17.41%
δ13 0.0011 -0.0032 0.0048 0.0063 23.39%
δ23 -0.1441 -0.1318 0.0117 0.0152 22.98%
γl1 0.0049 0.0181 0.0057 0.0063 9.82%
γl2 -0.0030 0.0370 0.0131 0.0151 13.60%
γl3 0.0086 -0.0030 0.0112 0.0135 17.36%
γf1 -0.0157 -0.0220 0.0035 0.0043 19.51%
γf2 0.0172 -0.0241 0.0088 0.0100 12.21%
γf3 0.0217 0.0570 0.0064 0.0080 19.82%

The model is given by

lnWageit = β1Eit + β2Mit + β3Fi + β4Edit + vi + εit,

where the dependent variable is the logged wage, and the explanatory variables are experience in
years (E), dummies for marriage status (M) and the individual being female (F ), as well as the
years of education (Ed). As there is a strong reason to suspect that the unobserved individual
effect vi to be endogenous due to omitted variables such as personal capability and motivation,
we apply our dp-crem model, and write vi as

vi = β̃1Ei + β̃2M i + ui. (58)

The means of experience and marriage status of individual i are included as they are the two
time variant variables in the original model.

Table 10: U.S. Individual Wage crem

Mean S.D.

Sample size 100 250 100 250

Parameters DP REM DP REM DP REM ∆% DP REM ∆%

β1 0.100 0.102 0.094 0.099 0.0025 0.0032 24.18% 0.0015 0.0020 25.49%
β2 0.027 0.038 -0.043 -0.070 0.0375 0.0524 28.43% 0.0231 0.0308 25.07%
β3 5.184 1.945 5.077 1.825 0.2646 0.4256 37.83% 0.1576 0.2602 39.42%
β4 0.085 0.334 0.075 0.288 0.0189 0.0213 11.22% 0.0091 0.0131 30.74%

β̃1 -0.091 -0.058 -0.085 -0.058 0.0046 0.0077 40.21% 0.0028 0.0056 50.17%

β̃2 5.450 1.603 5.668 2.261 0.2968 0.3381 12.23% 0.1493 0.2091 28.60%

Table 10 contains the posterior means, s.d. and the percentage difference between the s.d.
estimated with our dp-crem and Bayesian crem assuming normality for both the 100 and 250
individual sub-sample. The two coefficients for the means of time variant explanatory variables,
β̃1 and β̃2 are both significant with both sub-samples, indicating that vi actually is correlated to
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the explanatory variables, confirming our suspicion. As for the coefficients for the explanatory
variables themselves (β1 to β4), the posterior means are all of the same signs with the dp-crem
and dp-rem, and the differences between them become smaller with the larger sub-sample of
250 observations. As expected, the experience and education are both positively correlated
with the wage of the workers. The coefficient for the gender dummy (β3) is also positive. This
may seem as an indication of gender discrimination in wages against male workers within the
two sub-samples25. Heterogeneity is detected in both sub-samples, as the posterior modes of
the numbers of groups in the random effects and errors are 2 and 3 with the 100 individual
sub-sample, and 3 and 4 with the 250 individual one. Our semi-parametric dp-crem provides
smaller posterior s.d. for all coefficients with both sub-samples.

In Figure 2 we present histograms of the posterior distributions of the education (β4) pa-
rameter. As before, the two red vertical lines in each panel mark the 95% credible interval.
Comparing panel (a) and (b) we observe that for the 100-observation sub-sample both the
dp-crem and the parametric Bayesian crem give 95% credible that exclude 0, with the 95%
credible interval for dp-crem (from 0.052 to 0.119) shorter than the parametric crem (from
0.292 to 0.377). This is not surprising given that the posterior distribution is right skewed as
shown in panel (a). Similar conclusions follow from comparing panel (c) and (d) based upon the
250-observation sub-sample. The 95% credible interval with the dp-crem is from 0.058 to 0.092,
while that with the parametric crem is from 0.263 to 0.313. Note also that the 95% credible
intervals based upon the 250-observation sub-sample are shorter than their counterparts using
the 100-observation sub-sample, due to the increase in the sample size.

5 Conclusion

In this paper we address the potential violation of the assumptions made by parametric Bayesian
gls estimators that the unobservables are homogeneous regarding their distributions. Such
assumptions are likely to be problematic in reality particularly when micro data are used, as
the features of individuals or households are likely to lead to the distributions of observations
being different. We present a semi-parametric Bayesian gls where the error distribution is a
non-parametric mixture of normal distributions by introducing a Dirichlet process prior on the
hyper-parameters of the errors. The number of normal components is decided jointly by the data
and the prior in such a mixture of normals, which is able to cover a large variety of distributions.
The errors are grouped by the DP prior, with those in the same group having the same hyper-
parameters and thus the same distribution. Two specific cases of the semi-parametric Bayesian
gls are then introduced, which are the sur for equation systems and the rem/crem for panel
data.

Our dp-sur and dp-rem/dp-crem methods are demonstrated with a series of simulation
experiments consisting of three scenarios, where the unobservables follow normal distributions,
t-distributions which are one type of scale mixtures of normals, and log-normal distributions,
respectively. The results show that in the homogeneous normal case, our dp-sur and dp-
rem/dp-crem methods give posterior means and s.d. similar to their parametric counterparts
assuming normality. When the errors follow t-distributions, the degrees of freedom of the t-
distribution control how heavy the tails are, which reflects the strength of heterogeneity in
the unobservables. Our simulation results show that the posterior s.d. of our dp-sur and

25However, before jumping to this conclusion, one should keep in mind that in the time period of the data (1976
to 1982), fewer women were working than at present. In the 100-observation sub-sample, 16% of the workers are
women, and in the 250-observation sub-sample, the percentage is 8.8%. Given such low percentage of female
workers, those women who did decide to enter the labour market may themselves be relatively skilled workers
who could reasonably expect a high wage. The sample selection bias (Heckman, 1976) may still be present here
as a result, though it is not within the scope of this paper.
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(a) dp-crem, 100-observations (b) Parametric crem, 100-observations

(c) dp-crem, 250-observations (d) Parametric crem, 250-observations

Figure 2: Histograms of the parameter for education (β4)

dp-rem/dp-crem are smaller than those of the parametric Bayesian methods. Such efficiency
gains are the largest when df is 2 that represents the strongest heterogeneity. The efficiency
gains become smaller when the df increases, for the tails are less heavy, i.e. the heterogeneity
is less strong. The simulations with log-normal unobservables are used to demonstrate the
robustness of our method with asymmetric, fat tailed distributions. The results demonstrated
that the posterior s.d. of our dp-sur and dp-rem/dp-crem method are more than 50% smaller
than those of the parametric Bayesian estimators assuming normality. Moreover, the efficiency
gains increase slightly with larger sample sizes when the distribution of the unobservables are
non-normal, which is the result of more extreme realizations in large samples.

We apply our dp-sur method to the demands for production factors with the generalized
Leontief cost function using a dataset of the U.S. banking industry. We estimate the model
with an 800-observation sub-sample and the full sample. Heterogeneity is detected in both
the sub-sample and the full sample. The dp-sur posterior s.d. are smaller than the normal
Bayesian sur ones for all the demand elasticities, which shows that it is more preferable to use
a semi-parametric method such as our dp-sur.

Our dp-rem/dp-crem are applied to two datasets as well. The first is a U.S. bank cost
functions data. The rem seems to fit the datasets better. Heterogeneity is detected in the U.S.
bank data, and our dp-rem achieved smaller posterior s.d. than the parametric Bayesian rem.
The second application is a U.S. individual wage model, where there is a strong reason to suspect
that the unobserved individual effects are correlated to the explanatory variables like education
due to unobserved individual features such as abilities. The crem model is then estimated. Our
dp-crem detects heterogeneity in this dataset as well, and obtains smaller posterior s.d. than
the parametric Bayesian crem.
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A Posterior Means for DP-SUR Simulations

A.1 Multivariate t-distributed Errors

Table 11 gives the posterior means averaged over the samples that are estimated with the dp-
sur and sur assuming normality. One can see that the posterior means estimated with both
our semi-parametric dp-sur and the Bayesian sur assuming normality are similar to each other.
In addition, they are both close to the true values of the coefficients in all cases.

Table 11: Posterior means, multivariate t errors

df = 2

Sample size
Truth

100 250 500

Parameters DP SUR DP SUR DP SUR

β10 1 1.035 0.942 1.017 1.044 0.986 1.051
β11 -0.5 -0.500 -0.484 -0.491 -0.488 -0.500 -0.519
β12 1.6 1.590 1.606 1.591 1.585 1.606 1.590
β20 1.5 1.524 1.568 1.482 1.540 1.484 1.387
β21 -1.2 -1.195 -1.194 -1.201 -1.194 -1.206 -1.230
β22 -0.7 -0.702 -0.719 -0.697 -0.700 -0.696 -0.684
β23 2 2.003 2.006 1.998 1.980 2.010 2.004

df = 3

Sample size
Truth

100 250 500

Parameters DP SUR DP SUR DP SUR

β10 1 1.008 1.002 1.015 1.030 0.999 0.989
β11 -0.5 -0.497 -0.493 -0.502 -0.499 -0.498 -0.499
β12 1.6 1.600 1.600 1.596 1.591 1.598 1.601
β20 1.5 1.507 1.507 1.493 1.502 1.503 1.504
β21 -1.2 -1.194 -1.183 -1.198 -1.199 -1.202 -1.199
β22 -0.7 -0.699 -0.696 -0.698 -0.699 -0.703 -0.702
β23 2 1.995 1.989 1.999 2.001 1.995 1.996

df = 4

Sample size
Truth

100 250 500

Parameters DP SUR DP SUR DP SUR

β10 1 0.973 0.979 1.000 1.000 0.989 0.992
β11 -0.5 -0.500 -0.499 -0.516 -0.519 -0.495 -0.495
β12 1.6 1.610 1.609 1.606 1.608 1.603 1.600
β20 1.5 1.516 1.536 1.519 1.522 1.509 1.495
β21 -1.2 -1.205 -1.208 -1.192 -1.192 -1.202 -1.202
β22 -0.7 -0.708 -0.713 -0.700 -0.701 -0.704 -0.701
β23 2 1.996 1.997 2.000 1.995 1.998 1.999

df = ∞

Sample size
Truth

100 250 500

Parameters DP SUR DP SUR DP SUR

β10 1 0.9895 0.9864 0.9853 0.9846 0.9813 0.9835
β11 -0.5 -0.4969 -0.4974 -0.4959 -0.4957 -0.4904 -0.4905
β12 1.6 1.6030 1.6040 1.6040 1.6044 1.6005 1.5999
β20 1.5 1.4706 1.4706 1.5122 1.5122 1.4675 1.4677
β21 -1.2 -1.2115 -1.2118 -1.1959 -1.1965 -1.1976 -1.1977
β22 -0.7 -0.6984 -0.6985 -0.7004 -0.7003 -0.6911 -0.6912
β23 2 1.9950 1.9953 2.0000 2.0004 1.9973 1.9979
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A.2 Multivariate Log-normal Errors

Table 12 contains the posterior means estimated with the two methods with multivariate log-
normal errors. In all three samples the two posterior means of all the slope parameters are
similar, and are close to the truth. The intercepts β10 and β20 estimated with our dp-sur,
however, are farther away from the true values. The fact that the log-normal distribution is
skewed influences the posterior means of intercepts, when the DP mixture model mixes normal
distributions to model the log-normal distribution.

Table 12: Posterior means, multivariate log-normal errors

Log-normal

Sample size
Truth

100 250 500

Parameters DP SUR DP SUR DP SUR

β10 1 0.199 0.996 0.130 0.973 0.116 0.987
β11 -0.5 -0.501 -0.492 -0.499 -0.488 -0.496 -0.504
β12 1.6 1.600 1.598 1.606 1.605 1.602 1.603
β20 1.5 0.697 1.553 0.665 1.557 0.654 1.568
β21 -1.2 -1.201 -1.180 -1.202 -1.205 -1.199 -1.198
β22 -0.7 -0.701 -0.696 -0.703 -0.719 -0.705 -0.720
β23 2 2.004 2.012 2.002 1.993 1.995 1.988

B Posterior Standard Deviations for DP-SUR Simulations

B.1 Multivariate t-distributed Errors

Table 13 presents the full results regarding the posterior standard deviations of the dp-sur
simulations with multivariate t-distributed errors.

B.2 Multivariate Log-normal Errors

Table 14 shows the full results regarding the posterior standard deviations of the dp-sur simu-
lations with multivariate log-normal errors.

C Posterior Means for DP-REM/CREM

C.1 t-distributed Errors

Table 15 contains the average of the posterior means over the samples of the coefficients in rem
with t-distributed random effects and errors. It can be seen that the averaged posterior means
estimated with our dp-rem and parametric Bayesian rem are all almost identical, and they are
all close to the true value of the coefficients for all four cases, i.e. df being 2, 3, 4, and infinity,
where the t-distribution becomes normal distribution.

The average of posterior means of the crem coefficients are presented in Table 16. Similar
to the rem case, the average of the posterior means estimated with both our dp-crem and
parametric Bayesian crem are similar to each other, and close to the pre-set true values of the
coefficients in all cases.

C.2 Log-normal Errors

Table 17 gives the average of the posterior means of the rem with log-normal distributed random
effects and errors. One could see that the the dp-rem and Bayesian rem assuming normality
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Table 13: Posterior s.d., multivariate t errors, full results

df = 2

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β10 0.4184 0.8103 42.59% 0.2328 0.5262 50.09% 0.1644 0.4175 55.49%
β11 0.1149 0.2155 41.57% 0.0732 0.1596 49.56% 0.0458 0.1126 54.22%
β12 0.1254 0.2358 41.74% 0.0696 0.1515 49.30% 0.0498 0.1223 54.12%
β20 0.5085 0.9791 42.67% 0.3261 0.7255 48.60% 0.2366 0.5649 53.30%
β21 0.1107 0.2080 41.49% 0.0649 0.1359 48.48% 0.0508 0.1198 52.78%
β22 0.1136 0.2141 41.63% 0.0653 0.1366 48.28% 0.0487 0.1139 52.34%
β23 0.1271 0.2391 41.63% 0.0631 0.1321 48.38% 0.0467 0.1098 52.55%

df = 3

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β10 0.4121 0.5327 20.63% 0.2250 0.3098 26.25% 0.1619 0.2289 28.09%
β11 0.1114 0.1452 21.20% 0.0708 0.0973 26.05% 0.0446 0.0634 28.53%
β12 0.1231 0.1586 20.40% 0.0670 0.0923 26.20% 0.0486 0.0687 28.01%
β20 0.4980 0.6497 21.15% 0.3174 0.4344 25.73% 0.2260 0.3220 28.82%
β21 0.1079 0.1397 20.63% 0.0630 0.0866 25.91% 0.0488 0.0694 28.70%
β22 0.1114 0.1442 20.51% 0.0636 0.0869 25.63% 0.0462 0.0661 29.11%
β23 0.1230 0.1609 21.35% 0.0617 0.0844 25.61% 0.0449 0.0638 28.70%

df = 4

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β10 0.3931 0.4570 13.98% 0.2211 0.2625 15.19% 0.1578 0.1913 17.09%
β11 0.1079 0.1248 13.52% 0.0696 0.0826 15.22% 0.0440 0.0529 16.58%
β12 0.1179 0.1363 13.49% 0.0659 0.0783 15.32% 0.0476 0.0574 16.81%
β20 0.4856 0.5568 12.78% 0.3091 0.3686 15.49% 0.2210 0.2702 17.82%
β21 0.1054 0.1200 12.15% 0.0618 0.0733 15.08% 0.0473 0.0582 18.41%
β22 0.1086 0.1236 12.17% 0.0617 0.0739 15.88% 0.0456 0.0554 17.30%
β23 0.1204 0.1376 12.56% 0.0603 0.0717 15.19% 0.0438 0.0534 17.77%

df = ∞

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β10 0.3076 0.3016 -2.04% 0.2055 0.2031 -1.20% 0.1275 0.1270 -0.39%
β11 0.0854 0.0837 -2.09% 0.0569 0.0565 -0.85% 0.0372 0.0371 -0.56%
β12 0.0909 0.0891 -1.97% 0.0611 0.0605 -1.13% 0.0366 0.0365 -0.42%
β20 0.4796 0.4696 -2.19% 0.2754 0.2730 -0.93% 0.1826 0.1810 -0.96%
β21 0.0879 0.0860 -2.25% 0.0575 0.0572 -0.58% 0.0388 0.0384 -1.14%
β22 0.0974 0.0955 -2.03% 0.0568 0.0564 -0.83% 0.0395 0.0395 -0.25%
β23 0.0888 0.0868 -2.31% 0.0557 0.0552 -0.93% 0.0355 0.0355 -0.23%
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Table 14: Posterior s.d., multivariate log-normal errors, full results

Log-normal

Sample size 100 250 500

Parameters DP SUR ∆% DP SUR ∆% DP SUR ∆%

β10 0.2221 0.5537 56.72% 0.1536 0.4525 63.95% 0.1001 0.2927 64.94%
β11 0.0720 0.1831 57.64% 0.0415 0.1266 65.06% 0.0272 0.0834 66.61%
β12 0.0672 0.1741 58.37% 0.0438 0.1338 65.20% 0.0280 0.0867 66.95%
β20 0.3363 0.8722 57.82% 0.2150 0.6088 63.42% 0.1382 0.4064 65.06%
β21 0.0800 0.2119 58.78% 0.0439 0.1277 64.38% 0.0270 0.0826 66.39%
β22 0.0716 0.1890 58.64% 0.0438 0.1277 64.44% 0.0297 0.0896 65.87%
β23 0.0662 0.1749 58.58% 0.0398 0.1147 64.05% 0.0270 0.0806 65.62%

Table 15: Posterior means, rem with t distributed unobservables

df = 2

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 5.003 5.005 5.002 5.000 5.008 5.013
β2 10 9.999 10.002 10.000 9.997 9.996 9.990

df = 3

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 4.997 4.996 5.004 5.005 4.999 4.999
β2 10 10.001 10.000 9.998 9.997 9.999 9.999

df = 4

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 4.999 4.999 4.998 4.998 4.997 4.998
β2 10 10.001 10.001 10.001 10.003 9.998 9.998

df = ∞

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 5.003 5.003 5.000 5.000 4.998 4.998
β2 10 9.998 9.999 9.999 9.999 10.000 10.000
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Table 16: Posterior means, crem with t distributed unobservables

df = 2

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 4.999 5.003 4.996 4.988 5.001 4.997
β2 10 10.002 9.996 10.001 10.005 10.000 9.999
β3 -2 -1.973 -2.020 -1.988 -1.961 -2.005 -2.003
β4 2 1.991 2.023 1.993 1.990 2.006 2.011

df = 3

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 4.996 4.993 5.002 5.005 4.994 4.995
β2 10 10.000 9.997 10.000 10.003 9.997 9.995
β3 -2 -1.987 -1.970 -1.983 -1.968 -1.986 -1.996
β4 2 1.995 1.991 1.997 1.987 1.999 2.004

df = 4

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 4.998 4.999 5.002 5.001 4.999 4.997
β2 10 10.003 10.003 10.002 10.001 9.998 9.993
β3 -2 -1.999 -1.996 -1.999 -1.996 -2.005 -2.004
β4 2 2.000 1.999 1.996 1.996 2.008 2.014

df = ∞

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 5.000 5.000 4.998 4.998 5.003 5.003
β2 10 10.001 10.001 9.998 9.998 10.001 10.001
β3 -2 -1.999 -2.000 -2.004 -2.005 -1.998 -1.998
β4 2 1.998 1.998 2.004 2.005 1.999 1.999
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obtain relatively close means to the true values of the coefficients, with the dp-rem posterior
means being slightly closer to the truths.

Table 17: Posterior means, rem with log-normal distributed unobservables

Log-normal

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 5.147 5.491 5.124 5.414 5.113 5.371
β2 10 10.357 11.163 10.369 11.232 10.359 11.222

Table 18 presents the posterior means averaged over the simulation samples of the dp-crem
and normal Bayesian crem with log-normal distributed random effects and errors. The posterior
means of the coefficients for the explanatory variables are very close to the truth with both our
dp-crem and Bayesian crem assuming normality. The posterior means of the coefficients for
the means of the explanatory variables are slightly farther away from the truth. The skewness
of the log-normal distribution influences the posterior means of the intercepts, which are time
invariant for each individual i in the random effects. In the crem case, the sample means of
each individual’s explanatory variables, x̄1i and x̄2i, are also time invariant like the intercept. As
a result, the posterior means of their coefficients, β3 and β4, are more different from the truth
compared with β1 and β2, as the log-normal distribution is skewed.

Table 18: Posterior means, crem with log-normal distributed unobservables

Log-normal

Sample size
Truth

100 300 500

Parameters DP REM DP REM DP REM

β1 5 5.002 5.023 4.999 4.974 5.000 5.040
β2 10 9.999 10.020 10.007 10.015 10.000 9.995
β3 -2 -1.908 -1.269 -1.851 -1.657 -1.832 -1.432
β4 2 2.669 3.734 2.590 3.896 2.577 3.818
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